Archive for the ‘ electric flight ’ Category

Thinking out of the box: The case for flying car

I have been thinking what would make “flying cars” feasible. I think the answer is pretty much that it needs to be VTOL. Anything that lands on runway will become very complex design mechanically. A real solution would be to land on the car anywhere, e.g. shop parking lot.

So what are the breakthroughs needed for this? I doubt that the internal combustion engines can do this ever very well and turbines are out of question as well because nobody can afford flying to shop with turbine power. So I think this will require electric motors and advanced battery technology. Hybrid design could possibly work too.

Large helicopter propeller blades will become a problem when landing on congested place and it would cause also safety issues. You could hit something with the rotating prop and newspapers would be full of horrific accidents very soon. Someone sliced somebody or sliced somebody’s house or whatever. The props should be shrouded for safety of general public. Then how many props? One prop and it will require tail and tail rotor. Not so nice. Coaxial rotors, that would be better but still will require one to be helicopter pilot. I think the case of how it would work is very simple, and the case example already exists in small scale as sort of “RC copter”:
http://ardrone.parrot.com/parrot-ar-drone/usa/

So computer controlled fly by wire and the user would be just selecting to go forward or backward or up or down or to rotate. Computer handles the rest. Each prop would have electric motors, big ones instead of the small ones found from the little thing. This plane could even have small wings, which could be optimized for cruise only (and not for landing at all) and could be possibly pivoting – when airspeed increases less vertical thrust would be needed. This could be “the flying car” that everybody can control. Not everybody can become a helicopter pilot or even airplane pilot – requirements are all the time becoming more and more and less and less will ever succeed to become pilots (from those who dared to start the training), but anybody that can drive a car, can select up, down, turn left, turn right, go forward, go backwards. This thing could be done so that all “flying cars” would have a data link to other “flying cars” nearby. The computer could automatically avoid collisions without the need of centralized air traffic control at all. Actually air traffic control is a system that can not scale to the level of cars are used on the roads, no matter what. The only way to manage the huge amount of traffic is to not have centralized control at all, but the control would need to be between the aircraft and it would need to be automatic data link, not this antiquated AM radio we are using to call ATC. I think it would be reasonable to make the system such that there could be as many flying cars in the air than there are cars on the ground now. Traffic congestions could be easily avoided because there is lots of space in the vertical plane in the air (when we forget about airspace altitudes and minimum altitudes etc.).

The four rotor configuration would also solve the problem of placing ballistic parachute. It could be directly at the CG and it could be even made automatic, if something fails, parachute would be pulled right away.

So what would be needed:
– lightweight electric motors with high power (already possible with today’s technology)
– fly by wire system (already possible with today’s technology)
– data link to other aircraft (would be already possible with today’s technology)
– combustion engine to charge batteries (already possible with today’s technology)
– high capacity light weight batteries (this might require next generation batteries to have good enough usefulness)

For these to be good for mass market, the following points must be considered:
– it must not require pilot’s license
– it must not require medical of any kind
– it must not be over-regulated, otherwise it will never gain any popularity
– it needs to be very much automatic and very easy
– there must not be super-restrictive regulation where one can land and take off, the usefulness of this concept depends on possibility take off and land from and to everywhere, it would make no sense to take off from airport and to land to airport
– it would not replace airplane, instead one could fly with this kind of machine to airport to get far away with the airplane, I don’t see that this kind of design could be made ultra long range and super fast.
– it is unavoidable that this design actually requires more space still than a car, quite large diameter props needs to be used for efficiency. However, each of them would be more reasonable size compared to one helicopter rotor and less expensive to manufacture. Also four rotors provide more thrust and lower disc loading than a single rotor.

Then how these could be manufactured?
– For mass market I think they should be pressed with 3d molds from aluminium with monococue type construction like cars are made of steel. This should be feasible with today’s technology because Piaggio P-180 Avanti is manufactured from this type of aluminium construction.
– There could be no rivets and there could be no hand layup in anywhere in the structure to make the price down
– The price of high capacity batteries must drop to get the price down
– the electric motors are inexpensive to manufacture in great volumes

So I don’t believe in Möller’s design as such (combustion engines driving ducted fans), but this slightly different version (with helicopter like but shrouded rotors) could possibly be feasible. And these could be made aesthetically to look very stylish unlike helicopters, and they could have bigger mass market appeal also because of that.

Idea: Series hybrid in airplane using auto engine and avoiding the pitfalls of auto conversions

I have been thinking this back and forth now quite some time. This idea is quite simple, the purpose is to fix the most critical problem with auto conversions, achieve better aerodynamics, propeller placement and mass and inertia distribution.

Auto conversions most often fail, no surprise, because of the reduction gear or belt. The core engine is not the root cause in the problems and many problems with the reduction belt or gear system can not be seen beforehand because the dynamics of the vibrations of the engine, propeller and their inertia forces affecting each other is a bit more complicated than one could think at first – it is not that simple to make these parts to last for hundreds or thousands of hours.

So we came up (with Kate, we usually talk with Kate about these things and we kind of invent these things together, I usually happen to be the one who writes them down – and it is usually so that Kate is the opponent into which I test my idea’s feasibility before I write it here) with the idea of having a auto engine, possibly a diesel engine, running at constant power, most likely exactly at the optimum point of the engine, always. Then all the power variation would come from the electric motors which would drive the propellers. The idea is that the diesel engine only runs a generator.

The downside of this idea is the additional weight from the generator, batteries, motor controllers, electric motors and the props (depending how many electric motors are used, it is also possible to use just one if that is preferred). However, there are two several things possibly good about this:

– First the diesel engine burns less fuel, resulting smaller fuel tanks.
– Secondly the gearbox system is saved. The gearbox system can be very heavy duty in a high power aircraft engine and they still have tendency to fail. Possibly something like 40-50 kg is saved straight away.
– Thirdly the aerodynamic advantage – optimal aerodynamic shape without using long extension shafts and couplings to deal with the dynamics of the rotating shaft connected to a non-optimally rotating propeller and the power pulses of the diesel engine. Now there is the chance to put the engine anywhere in the airframe where it best fits and propeller drive don’t need to be considered at all.

Then there is the redundancy thing. Brushless DC electric motors usually never fail, but the prop can still fail in bad circumstances. Therefore having two independent props for the one diesel engine could be advantageous. Same thing with the batteries – if the diesel engine fails, the batteries could be sized such that the aircraft can fly without the diesel engine for example for 30 minutes in level flight. That might be enough in most cases to get safely on the ground, except on middle of an ocean. The most likely place for the engine to fail is the takeoff. This takeoff stress would never happen with this engine configuration – the engine would be run always at optimum and safe power, never on takeoff power. The extra power for the takeoff can be easily taken from the batteries if they have proper capacity and the electric motors are powerful enough. On takeoff the batteries at full power are not discharging that quickly, because the diesel engine is recharging the batteries at the same time. The takeoff power can be rarely used for longer than 5 minutes on an aircraft equipped with Lycoming engine either, so having a limited period of time for the full power is not that big problem.

Generator and electric motor can have very high efficiency, and the gap to a efficiency of a reduction belt system is not that great. Best electric motors (though heavy ones) are around 98% efficient.

On descent the diesel engine could be shut down providing there was enough battery capacity. The motors could actually regenerate also batteries when the pilot wants to decelerate the plane.

Maintenance cost would be like a single engine aircraft, but the reliability geared towards a twin. Of course there is the one little fine print: the battery pack is expensive and it has an expiration time and date, unfortunately. But nothing is perfect and without compromises.

Any comments about this idea? This surely would not be a racer as the power to weight ratio would be rather poor, but anyhow I am thinking, providing it would be efficient enough to climb adequately, this would be a quite economical thing to fly and also easy conversion-wise, almost stock auto engine would be okay, no reduction gear and prop installation and an assembly that takes the push or pulling loads, would be needed. Also waiting on the airport would not waste any energy, since props can be completely stopped when the plane does not need to move. For example Lycoming IO-360 consumes about the same amount of gasoline per hour when waiting on IFR clearance on the ground than our Toyota Prius car on highway. Consuming zero amount of fuel when still on the ground, but still being ready, would save some liters.

And answer to the question, why diesel and not gasoline when gasoline engines can be run very lean and quite great specific fuel consumption values can be achieved in optimal conditions – it is quite simple: availability of the 100LL/Avgas seems to be becoming poor. There has been three 100LL operators in Finland, but two of them decided to discontinue this year. There is only one left. When that only one decides that it is not profitable enough, there is no 100LL available for anybody and the whole country’s fleet of Lycoming and Continental based planes are grounded. The Jet-A1 is not going anywhere, so engine that can burn the jet fuel would be a safe bet. Jet engine, turboprop, or turbofan are out of the question because those are not available in meaningful sizes and power classes – there is not a small turbofan that would have high pressure ratio and bypass ratio available, nobody manufactures such a thing. And it is unlikely anybody will in the future because this personal flying all is a very niche market unfortunately until it changes for better (if it ever does).

The implementation possibilities have challenges; namely no such electric motor available (would require custom motors possibly), etc. And the weight also causes penalty for the efficiency and speed of the plane. But the power to weight ratio will be with this arrangement a lot better than on a pure electric aircraft. And pure electric aircraft is feasible, why an electric aircraft with a generator and a fueltank added would not be.

And by the way, even if it is first of April at the time of writing this, this blog post is not an April fool.

>Hybrid aircraft

>The idea of the system comprises of a turbo generator per engine and an additional electric motor behind the tail.

Configuration:
Two gasoline engines, one per wing.
One Brushless DC electric motor, behind the tail, engine size around 15 kW. Does not require any drive shaft because the motor itself is so small and lightweight, that it can be attacted directly to the tail.
Battery that can deliver full power to the electric motor for 3 minutes.
Motor controller for each electric motor.

Possible additions:
Two wing tip turbines, one per each wing tip. Electric motor size ~5 kW.
These can produce power on cruise for the middle pusher motor.

The center pusher motor could drive a unducted fan which would have diameter around 1/3 of the diameter of the fuselage body. See NASA tech paper wake propeller, why. The fan would require adjustable pitch for each blade, so it could be changed from climb condition to cruise condition for the cruise phase (otherwise it would cause drag penalty).

Additional idea:
– the wing tip turbines could be used in case of engine failure for thrust vectoring – one small wing tip engine producing thrust could make the asymmetric thrust condition symmetric without causing drag penalty with deflected rudder.

Hybrid aircraft

The idea of the system comprises of a turbo generator per engine and an additional electric motor behind the tail.

Configuration:
Two gasoline engines, one per wing.
One Brushless DC electric motor, behind the tail, engine size around 15 kW. Does not require any drive shaft because the motor itself is so small and lightweight, that it can be attacted directly to the tail.
Battery that can deliver full power to the electric motor for 3 minutes.
Motor controller for each electric motor.

Possible additions:
Two wing tip turbines, one per each wing tip. Electric motor size ~5 kW.
These can produce power on cruise for the middle pusher motor.

The center pusher motor could drive a unducted fan which would have diameter around 1/3 of the diameter of the fuselage body. See NASA tech paper wake propeller, why. The fan would require adjustable pitch for each blade, so it could be changed from climb condition to cruise condition for the cruise phase (otherwise it would cause drag penalty).

Additional idea:
– the wing tip turbines could be used in case of engine failure for thrust vectoring – one small wing tip engine producing thrust could make the asymmetric thrust condition symmetric without causing drag penalty with deflected rudder.

>Solar plane makes record flight

>A solar UAV utilizing Lithium-Sulphur batteries and amorphous silicon solar arrays has made a record flight. Read the BBC NEWS story: BBC: Solar plane makes record flight

Solar plane makes record flight

A solar UAV utilizing Lithium-Sulphur batteries and amorphous silicon solar arrays has made a record flight. Read the BBC NEWS story: BBC: Solar plane makes record flight